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Abstract 

In a preceding paper [Giacovazzo & Siliqi (1996). Acta 
Cryst. A52, 133-142], the joint probability distribution 
of seven pairs of isomorphous structure factors was 
derived. Its complicated mathematical expressions are 
here simplified by introducing the assumption that 
isomorphism is due to heavy-atom addition to the 
native structure. The reliability of the conclusive 
formula for calculated error-free data perfectly agrees 
with expectations. The formula, however, is not robust 
against lack of isomorphism and errors in measure- 
ments: in the paper, theoretical reasons are given 
justifying this behaviour. The use of the prior informa- 
tion on the heavy-atom structure markedly improves the 
formula, which then proves suitable for practical 
applications. 

1. Symbols and notation 

The notation is that used in the paper by Giacovazzo & 
Siliqi (1996) (from now on denoted as paper I). 

2. Introduction 

In paper I, the joint probability distribution function 

P(~bl . . . . .  tP7, ~1 . . . .  , ~7, R1 . . . .  ,R7, S i . . . . .  $7) (1) 

has been derived [see equation (1.18)]. From (1), the 
conditional probability 

P(~IR 1 . . . .  , e 7, S 1 . . . . .  S7) , (2) 

where 

may be obtained as follows. 
(a) The marginal distribution 

e(q~l ,  • • • , t~4, R1 . . . . .  R7, Sl  . . . .  , S7) 

is obtained by integrating (1) over the ten variables 
t~5, t~ 6, t~ 7 , 1/r 1 . . . . .  lP 7 • 
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Table 1. Code name, space group and crystallochemical 
data for test structures 

Molecular 
Structure code Reference Space group formula Z 

APP (1) C2 CI90N53OsgZn 4 
CARP (2) C2 CsI3NI31OIE1Ca2S 4 
E2 (3) F432 C 1170N310036687 96 
M-FABP (4) P212121 C667 N1700261S 3 4 

References: (1) Glover, Haneef, Pitts, Wood, Moss, Tickle & Blundell 
(1983); (2) Kretsinger & Nockolds (1973); (3) Mattevi, Obmolova, 
Schulze, Kalk, Wesphal, De Kok & Hol (1992); (4) Zanotti, Scapin, 
Spadon, Veerkamp & Sacchettini (1992). 

(b) The conditional distribution 

P(tPl . . . . .  tPalR1 . . . . .  R 7 , S1 . . . . .  $7) 

= P(t~I  . . . . .  t~ 4, RI  . . . .  , g 7 ,  S1 . . . .  , $7)  

I 
27r 2Jr 

× f . . .  f e ( t ~ l  . . . . .  t~4, e I . . . . .  R7,  S 1 . . . . .  $7)  
0 0 

d~bl • • • d~b 4 (3)  

is calculated. 
(c) The distribution (3) is integrated over ~bl, ~b2, ~b3, ~b 4 

under the condition that 

0~1 + 4 2  +4~3 +4~4 = ~- 

The calculations may be performed via the formulas 
quoted in Appendix A of paper I. However, the 
conclusive distribution turns out to be too complicated 
for most routine applications. We prefer to derive a 
simpler result by introducing the following basic 
assumption: the derivative structure is obtained by 
addition of heavy atoms to the basic structure. This is 
the classical case of isomorphism between the native 
protein and its heavy-atom derivative. We will show that 
in this situation the joint probability distribution (1.18) 
will become useful and will reveal the characteristic 
features to be exploited in practical applications. The 
experimental diffraction data of some proteins and their 
derivatives will be used to check the mathematical 
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approach and the final probabilistic formulas. The code 
names, the space group and the crystallochemical data of 
the test structures are given in Table 1, the relevant 
parameters of the diffraction data are shown in Table 2. 

3. A simplified P7 distribution 

For a native-protein-heavy-atom-derivative case, the 
following relations can be used for making the distribu- 
tion (I.18) simpler [see Giacovazzo, Cascarano & Zheng 
(1988), hereafter GCZ, for the triplet parameters]. 

I/2 1/2 
0/i = [o.2]p /[o.2]d 

(1 -- t~/) = [o"2]/-//[o"2]d 

0/~/(1 - a/2) = [o"2]p/[o"2]n 
0/i/( l 0/2) 1/2 1/2 - = [o"dp [o"2]d /[o"2], 

~/ijl/0/i : Yijl/0/j : ~/ij-l/0/l = ~/ijl/0/i0/j = ~/7jl/0/i0/1 

"-- ~ijl/0/j0/l = ~'ijl ~- ~p = [O.3/O.3/2]p 

y~j~ = {[o"3/o"3/21p .~_ [o"jo"~/% 3/~ 3/2 [0"2 ]H/[0"2 ]p }0/i0/j0/l 
3/2 3/2 3/2 3/2 

Ej~=[O.3/O.2  ]p --  [O.3/O.2 ]H[~r/ ]p/[o"2 ]H 

E J  % @  = E j d  (0/i@ = '6iid (o/io/P = --~ijT /0/i 
= ~Tj~/0/j = -~Tj~/0/~ = ,e~y~ 

3/2 3/2 3/2 -1 ~f)l--0/i0/j0/l[o'3/o'2 ]H[O.2 ]H[O.2 ]p [(1--0/2)(1-0/2) 
x (1 0//2)]-1 3/2 3/2 3/2 -- =[o.3/o.2 ]/-/[o.2 ]d/[o.2 ]n 

×1234 = [o.4/~1~ 

Y1233,/0/4 : Y1234/0/3 . . . . .  Y1234/0/30/4 

= Y17.34/0/20/4 . . . . .  Yi234/0/10/20/3 = Y1234 

~1234 = [o"4/°~22]p + [o.4/°~221/4[o.2]p~[o.2]~ 2 

- -  ~1233,/(0/10/20/3) --" --~1234/(0/10/20/4) -'- --~1234/(0/10/20/3) 

. . . . .  ~i234/(0/30/4) : ~i234/(0/20/4) 

~ a  = [~,/Nl,,[o"~l~[o"~l;,~(0/10/~0/30/4) -' 
4 

B1234 /=  H ~12/Y34/( 1 __ 0/2 __ 0/2 --  " ' "  + 0/10/20/30/4)2 2 2 2 
/=1 

3/2 2 
= [0"3/0"2 ]p 

4 

B123'~i = H ~/12i~/34i(0/4 --  014 --  0/20/4 "t- • • • "]- 0/20/4 "1- • • • 
/=1 

2 2 2  
+ 0/10/20/30/4) = 0 

Bis~7~i = O. 

In the following, we will always neglect [o.3/o.3/2]p 
3/2 with respect to [o'3/o" 2 ]n and [o"2/o"4] p with respect to 

Table 2. Relevant parameters for diffraction data of test 
structures 

Structure Native Derivative 
code RES(~,) NREFL Heavyatom [or2]H/[Or2]p RES(A) NREFL 

APP 0.99 17058 Hg 0.46 2.0 2086 
CARP 1.70 5056 Hg 0.09 2.0 4687 
E2 3.00 10388 Hg 0.08 3.0 9179 
M-FABP 2.14 7595 Hg 0.06 3.0 7125 

[o.2/o.4] p. Furthermore, from Appendix A, the following 
simplifications can be derived: 

(a) B1234 i is negligible with respect to B1234 ~, which 
may be approximated to 

B1234 ~ "~ 0/2i[O.3/O.~/212H[O.2]p/[O.2]H" 
/~mod(1) ,~ /~mod(2) 

(b) "-'1234/ - -"1234i  are negligible when compared 

w i t h  B1234 i. Rm°d_ (1) Bra°d- (2) 
(C) B123~i, ~1234i ' -1234i are negligible with respect to 

B123~ ~ e t c .  
In conclusion, we can approximate (I.18) by the 

expression 

7 
P7 ~" I-I ((1/rc2)[RiSi/( 1 -0/2)]exp{-[1/(  1 _0/2) 

i=1 

x [RE + S 2 - 20/iRiSicos(l[$ i - -hi )]})  

× { 1 + y]~[2flijtRiRjR t COS(b / + b j  + b l )  
ij, l 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

X 

+ 

× 

2fl~jlSiRjgl cos(q/i -q- bj -t- bl) 

2fli]lRiSjR l c o s ( b  / -q- lpj -+- b l )  

2~iiTR;R~S, cos(hi + bj + ~,) 

2~i f i e i s j s  i c o s ( b  / n t- lpj -~- 1/)/) 

2flTfiSiRjStcos(~i + by + ap,) 

2flT]ISiSjR l cos(~/n t- 1/rj --]-hi) 

2~Tjts;sjs;cos(V/i + 7~ + Or)] +~(B0,  + 87~t 
i,j,l 

Bi + Bifi + B;j-t + BTj-t + BT~t + t~57) 

2R1R2R3R4 ~1234 + E (  1 -- 0/2)-lB1234~L~ 
i=5 

COS(b/"At- b2 + b3 -]- b4)  

2R1R2R3S4 ~1234 -Jr E ( 1 -  o /2 ) - ln123~g~ 
;=5 

CoS(bl  "]- b2 + b3 + 1/)'4) --]- • • • '3t- 2SIS2S3S4 

× ~ i ~  + ~ ( 1  - 0 / 2 ) - ' 8 i ~ / ~  
i=5 

x cos(7~1 + ~2 + % + 7~4)}. (4) 

Equation (4) is our basic distribution: it represents a good 
approximation of the more complicated distribution 
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(1.18) when we deal with a native protein and a heavy- 
atom derivative. 

4. The quartet distribution 

We integrate over ten variables 4)5, t~6, t~7, l~r I . . . . .  1D" 7 in 
order to obtain, according to (3), the conditional 
distribution 

P(~bl, ¢~2' ¢3 '  4 0 4 i R 1 , " ' ' ,  R7, S1 . . . .  ' S7) 

(1 + ~"]~(nij I -t- nTj I --I-Bi) t 
a-1 

\ i,j,l 

+ Bij7 + Bi)7 + BTj7 + BTjt + B7jT) 

+ 2RlR2R3R4 fl1234 + y'~(1 - ot])-lB12347(L7) 
i=5 

"-t- 2 R 1 R 2 R 3 S  4 16123~ Jr" )-~'~(1 - o t 2 ) - l B 1 2 3 7 7 ( L T )  D14 
i=5 

+ . . .  + 2S1S2S3S4 fli~i + }-~(1 -ot])-lBi~sr~7(LT) 
i=5 

X Ol lO l2Ol3Ol41COS( l~ ) l .+ - (~2 -J i - i~3 -  ~- ~ 4 ) ) ,  (5)  

where Q-1 is a suitable scale factor, 

= - - 

and 

(LT) = 1 .  

Then, 

where 

P(401R1 . . . . .  R 7, S 1 . . . . .  S7) 

"~ [2rrlo(A)] -1 exp(A cos ~) ,  

A = T/(1 + B), 

[ 7 ] 
T : 2 R 1 R 2 R 3 R  4 /~1234 + ~-~'~(1 - O~2)-lB12347(LT) 

i=5 

"-t- 2 R 1 R 2 R 3 S  4 ~1233. "~ )--]~(1 - ot2)-ln123~,7(LT) D i g  
i=5 

"-t- . . .  -'l- 2SLS2S3S  4 16i~.~ -t- )--]~(1 - o t 2 ) - l B i ~ s a 7 ( L T )  
i=5 

X Dl lD12D13D14  , (8)  

B = 1 + ~-]~(Bij t + BTj t + Bij t + BO7 
i,j,l 

+ Bij7 + BTj7 + B73t + B737). 

The mathematical implications concerning the passage 
from the linear expression (5) to the exponential 
expression (6) are exactly those described by Giacovazzo 
(1976) for the quartet invariant estimate in the absence of 
derivative data. 

The distribution (6) assumes a particularly attractive 
form if a variable change is made. We replace in (6) 

Ri, Si, for i = 1, . . . ,  7 

by 

R I = Fei/z~//2 and S; = Fdi/2?IH/2, 

which are pseudo-normalized (with respect to the heavy- 
atom structure) structure factors. Accordingly, 

t 1/2 1/2 t 1/2 1/2 
R i : Ri[0"2] H /[0"2] p , Si ~- Si[0"2] n /[0"2] d • 

Then, (6) still holds, and its parameters may be rewritten 
in a simple form: 

A = [2A'lA'zA'3A'4/(1 + B')]{[aa/O~2]H 
3/2 2 t 

-11-[0"3/0"2 ]H[(L~) + (L6) --]- (L7)]}, (10)  

where 

A '  i : S ;D l i  - R; 

(~) = (S'~ + g'~ - 2glS~D'~i ) - 1 
t ! t l D]i = I 1 (2RiSi)/lo(ZRiSi) 

O t .~ 1 3/2 2 t t t t 
-:[°#°2 

The reliability parameter A of the quartet phase cp now 
has a simpler expression and may be conveniently 
studied. 

(6) 5. About the main features of the quartet formula 

Let us consider the quartet formula derived by 
Giacovazzo (1976, 1980) for the case in which derivative 

(7) data are not available. Then, 

P ( ~ )  = [2zrl0(A) -1 ] exp{A cos ~P}, 

where 

a = [2R1RzR3R4/(1 + B)]{cr4/o~2 + (a3/Crz3/Z) 2 

X (/75 + E 6 + E7)}, 

E. i --" Ieil 2 - 1, (10') 
1 3/2 2 

B = ~[0"3/0" 2 ] (E1E2,~ 5 -q- E3E4/35 -q- ~1~3~6 -q- E2E4E6 

+ 61g4e 7 + E2e3e7). 

B is a positive scaling factor; it is assumed B = 0 if 
(9) B _< 0. 

Equation (10) has a mathematical form similar to (lff): 
thus, the well known features of (10') may be used to 
describe the role of (10). Examples are given below. 

(a) In (10), we will set B' = 0 if B' _< 0. 
(b) If the heavy atoms are of the same type, (10) may 

be replaced by 
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A (2 /Nn)[A '  1 ' ' ' --" A 2 ` 4 3 A 4 / ( 1  Jr- n ' ) ]  

x {1 + [(/--~5) + (/-~6) + (L~7)]}, 

where 

B ' =  (1/2Nn)[(/.~) {/_~2) </_~5) + . . .  + (/_~2) (/..,~3) (/_,~7)] 
and N n is the number of heavy atoms in the primitive 
unit cell. 

(c) If some of the cross terms are unknown, then 
suitable marginal distributions should be calculated. 
The final result is: if the pairs (R~, St) and/or (R~, S~) 
and/or (R~, S~) are not among the measured data, then A 
may be updated by omitting in (10) the terms (/_@ and/or 
(L~.) and/or (/_~). 

" / / / / 

(d) if (/_,~5), (/_@, (/'~7) are large enough, the sign of 
the quartet will probably coincide with the sign of the 

A' a '  A' A' An extreme situation is that for product - 1 ~.a2 z.a 3 ~_a4. 
which 1`411 and R~S~, for i = 5, 6, 7, are large. Then, 

(L~) "~ ,4 ~ -  1 

and (10) assumes the more familiar expression 

t t t 3/2 2 A = [2A' 1`42`43`44/(1 + B')]{[Cra/cr2]n + [tr3/o" 2 ]n 

x [(A~ -- 1) + (`4~ 2 -  1 )+ ( ' 472-  1)]}, (11) 

where 

B' - -  1 3 / 2  2 t2 ~[O'3/O'2 ]~-/[(`41 - -  1 ) ( A ~ -  1 ) ( A ~ -  1) 

4 - ( , 4 ~ -  1)(,44 "2 - 1)(,4~ 2 - 1) 

+(a?- 

+(a?-  

+(a2 

1 ) ( A ~ -  1 ) ( A ~ -  1) 

1 ) ( A f -  1 ) ( A ~ -  1) 

1)(,44 ,2 -- 1)(A~ 2 -- 1) 

1 ) ( A ~ -  1)(A~ 2 -- 1)]. 

It should be noted that positive values of (As a -- 1)+ 
(A6 a -  1)+(A7 a -  1) do not select positive quartets 
because the sign of the quartet cosine is expected to 

A t A / A / coincide with the sign of A' 1,..,2~3,..,4 . 
( e )  I f  (L~=),.~ (Z~6), (Li-_)7 assume highly negative 

values, then fhe quartet is expected to have cosine sign 
opposite to that of the product A' A' A' ' ,...,l,...,2,.a3A4 . A typical 
case is that for which RiSi, for i = 5, 6, 7, is large and 
1̀451 is small. In this case, again, 

(Ui) _~ A~2 -- 1 for i = 5, 6, 7. 

(f) We will refer to the quartets described in (d) as 
large-cross quartets; the quartets described in (e) will be 
called small-cross quartets. The first provide information 
strictly correlated with that supplied by the triplets (as 
estimated by GCZ). For example, let us suppose that 

~ ) T  i = 41 "3t- 42  "31- (1)5 and ~ T  2 = (i)3 "3t- (])4 - -  45  

are two triplets characterized by large values of 
1`4',`4~`4;I and 1`4;`4~`4;I, respectively. Let SIGN(I) 

A t  A t  A /  t t t and SIGN(2) be the signs o f - 1 - 2 - 5  and `43A4A 5, 
respectively. The cosine sign of the quartet 

¢J) = (J)T, "3t- ¢J)T 2 - -  41 "}- (])2 "3t- 43  "3t- 4 4  

is expected to have the same sign of SIGN(I) x SIGN(2), 
which coincides with the sign of A, A, A, A, Thus, the "--I1 z'a2 z-a3 ~'a4" 
combination of the triplet estimates supply a quartet 
estimate coincident with that provided by (11). On the 
contrary, small-cross quartets provide information statis- 
tically independent of that provided by the triplets. 
Indeed: (i) triplets with small 1`41 values are usually not 
used in the phasing process (Giacovazzo, Siliqi & Platas, 
1995) because they are highly unreliable; (ii) the phase 
indications provided by the small-cross quartets are 
expected to be opposite to those provided by the triplets 
if these were used in the phasing process. 

6. Check of the probabilistic formulas by calculated 
diffraction data 

Let us first consider the role of (10') in direct procedures 
applied to small molecules. It has been found (Burla, 
Cascarano & Giacovazzo, 1992; Giacovazzo, Burla & 
Cascarano, 1992) that: (a) the reliability of the quartets 
estimated positive by (10') is nearly equal to the triplet 
reliability. However, such quartets carry into the phasing 
process information strictly correlated with the triplet 
information. The combined use of the positive quartets 
and of the triplets was therefore not advised; (b) the 
reliability of the quartets estimated negative by Off) is 
remarkably smaller than the triplet reliability; further- 
more, the number of reliable negative.quartets is in 
general smaller than the corresponding number of 
reliable triplets. However, they carry into the phasing 
procedure an important amount of information uncorre- 
lated with the information supplied by the triplets. The 
combined use of the triplets and negative quartets was 
strongly advised, and often makes the difference between 
success and failure. 

The above observations suggest the following conclu- 
sions about the role of (10): (a) the large-cross quartets 
are expected to be as reliable as triplets, but their use is 
not advised in the phasing process. For the sake of 
brevity, we do not check the formula (10) on this type of 
quartet; (b) the small-cross quartets are expected to be 
less reliable than the triplets but their combined use with 
triple t relationships in the phasing process may be 
advisable. Thus, we will focus our tests on the small- 
cross quartets alone. They are generated as the sum of 
two psi-zero triplets by means of the program recently 
described by Giacovazzo, Siliqi & Platas (1995). Triplets 
are found by combining two of the about 800 reflections 
with the largest values of IA'l, with one reflection chosen 
among those having IA'l _< 0.3. 

We apply (10) to calculated data in order to check its 
efficiency in case of perfect isomorphism and in the 
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T a b l e  3. APP: statistical calculations for  smaU-cross Tab le  5. E2: statistical calculations for small-cross 
quartet and triplet invariants quartet and triplet invariants 

Calculated error-free data for native and derivative structures are used. See Table 3 for the description of the protocol used for the calculations. 
For the quartets, the reliability parametersA and A c as given by (10) and 
(16) are employed; for the triplet estimation, the GCZ formula is used. 
NR is the number of phase relationships having IAI or IAc[ larger than 
ARG, % is the percentage of phase relationships whose cosine sign is 
correctly estimated and (1¢~1 °) is the average of the absolute values of 
the triplet or quartet phase q0. 

Positive quartet 
[equation (10)] 

ARG NR % (1¢,°1) 

0.4 9615 74.0 62 
0.8 7994 75.1 62 
1.6 2280 83.0 53 
3.2 1215 90.7 45 
5.5 5 lOO.O 30 
9.0 - - - 

Neg~ive quartet 
[equation (10)] 

NR % (1~Ol) 
10385 72.0 115 
8292 73.2 116 
2426 79.9 124 

11238 89.5 135 
3 100.0 134 

Positive triplets 
(GCZ) 

ARG NR % (1~Ol) 

1.6 28923 76.3 60 
3.2 15655 79.7 55 
5.5 5026 87.9 46 
9.0 684 98.2 30 

Negative triplets 
(GCZ) 

NR % (1~°1) 

21077 75.5 120 
8583 83.2 129 
2167 92.4 140 

218 100.0 155 

Positive quartet 
[equation (10)] 

ARG NR % (1~°1) 

0.2 10009 64.8 73 
0.4 2743 68.0 69 
0.8 92 78.3 51 

Positive triplets 
(GCZ) 

ARG NR % (1~Ol) 
1.2 25208 89.2 44 
2.0 2313 95.3 35 
2.6 303 99.0 30 

Positive quartet 
[equation (16)] 

ARG NR % (1~Ol) 

0.4 10048 79.1 57 
0.8 19Ol 89.1 45 
1.2 258 97.7 31 
1.6 33 lOO.O 25 

Negative quartet 
[equ~ion (10)] 

NR % (1~°1) 
9991 65.8 108 
2639 69.2 113 

72 76.4 124 

Negative triplets 
(GCZ) 

NR % (1¢,°1) 
22078 89.4 136 

1933 95.3 145 
286 98.6 152 

Negative quartet 
[equation (16)] 

NR % (1¢,Ol) 
9952 80.1 125 
1845 90.5 136 
242 92.6 145 

20 100.0 173 

Positive quartet 
[equation (16)] 

ARG NR % (1¢,°1) 
1.6 9483 79.1 57 
3.2 3403 83.2 52 
5.5 850 90.7 46 
9.0 34 100.0 24 

Negative quartet 
[equation (16)] 

NR % (1¢,°1) 
10517 77.1 121 
3626 80.4 125 

946 89.7 134 
39 100.0 152 

Tab l e  4. CARP: statistical calculations for small-cross 
quartet and triplet invariants 

See Table 3 for the description of the protocol used for the calculations. 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 

ARG NR % (1~°1) NR % (1~°1) 

0.2 2569 36.4 105 2512 35.5 74 
0.4 297 11.1 135 294 9.9 44 
0.8 1 0.0 110 2 0.0 46 

Positive triplets 
(GCZ) 

ARG NR % (la,°l) 

0.4 16963 91.3 42 
0.8 10537 95.2 37 
1.6 181 100.0 17 

Negative triplets 
(GCZ) 

NR % (1~°1) 

12511 90.4 137 
4152 97.8 145 

3 100.0 177 

Tab l e  6. M-FABP : statistical calculations for small-cross 
quartet and triplet invariants 

See Table 3 for the description of the protocol used for the calculations. 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 

ARG NR % (1¢,°1) NR % (1¢,°1) 

0.2 2339 63.7 72 2414 65.1 109 
0.4 375 64.3 69 369 66.9 112 
0.8 9 44.4 84 7 42.9 69 

Positive triplets 
(GCZ) 

ARG NR % (1¢,°1) 
0.4 21132 96.2 32 
1.2 8086 98.9 28 
2.0 968 100.0 20 

Negative triplets 
(GCZ) 

NR % (t¢,°1) 
16691 96.5 146 
4818 98.7 152 

551 100.0 160 

Positive quartet 
[equation (I 6)] 

ARG NR % (I,¢,Ol) 
0.2 9981 97.4 30 
0.4 7861 98.2 29 
0.8 1956 99.8 23 
1.2 95 100.0 17 

Negative quartet 
[equation (16)] 

NR % (1¢,°1) 
10019 97.4 150 
7825 98.0 151 
2033 99.9 156 

112 100.0 163 

Positive quartet 
[equation (16)] 

ARG NR % (1¢,°1) 
0.2 10147 98.2 32 
0.4 4885 98.1 34 
0.8 2 100.0 8 

Negative quartet 
[equation (16)] 

NR % (1¢,°1) 

9853 97.8 147 
4813 97.6 147 

4 100.0 169 

a b s e n c e  o f  e x p e r i m e n t a l  er rors  in the  m e a s u r e m e n t s .  

e s t i m a t e d  by  G C Z )  and  quar te t  rel iabi l i ty.  T h e  resu l t s  are 

s h o w n  in Tab l e s  3 - 6 .  W e  o b s e r v e  the  f o l l o w i n g .  

(a) In a c c o r d a n c e  wi th  ou r  d e f i n i t i o n  o f  sma l l - c ros s  
quar te ts ,  we  o m i t  f r o m  the  tables  all the  quar te t s  for  
w h i c h  

3/2 2 [O"4/O'2]H -i t- X[0"3/O" 2 ]HX[{L~5) --]- (L~6) --I- (L~7)] ~_~ 0. 

Since  t r ip le t  and  quar te t  r e l a t ionsh ips  c o u l d  c o - w o r k  in T h e  n u m b e r  o f  sma l l - c ros s  quar te t s  tu rns  ou t  to be  
the  p h a s i n g  p rocess ,  it is a l so  use fu l  to c o m p a r e  t r ip le t  (as m a r k e d l y  sma l l e r  t han  the  n u m b e r  o f  l a rge -c ross  quar te ts .  
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Table 7. APP: statistical calculations for small-cross 
quartet and triplet invariants 

Experimental data for native and derivative structures are used. For the 
description of the protocol used for the calculations, see Table 3. 

ARG 

0.8 
1.6 
3.2 
5.5 
9.0 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 
NR % (IS°I) NR % (IS°I) 

9783 39.9 102 10217 40.9 80 
5407 37.1 105 5856 39.0 77 

812 30.7 113 1040 36.5 74 
44 40.9 106 74 40.5 78 

2 50.0 74 5 40.0 82 

ARG 

1.6 
3.2 
5.5 
9.0 

Positive triplets Negative triplets 
(GCZ) (GCZ) 

NR % (IS°I) NR % (IS°I) 
7725 75.9 61 5420 73.3 118 
3720 79.9 56 1880 76.8 121 

612 85.9 48 226 76.5 125 
39 94.9 36 2 100.0 180 

ARG 

1.6 
3.2 
5.5 
9.0 

Positive quartet Negative quartet 
[equation (16)] [equation (16)] 
NR % (IS°I) NR % (IS°I) 

3075 68.5 69 3391 68.9 112 
1400 70.9 66 1497 72.1 116 
458 74.5 61 498 76.5 120 

91 90.1 48 92 82.6 127 

Table 8. CARP: statistical calculations for small-cross 
quartet and triplet invariants 

Experimental data for native and derivative structures are used. For the 
description of the protocol used for the calculations, see Table 3. 

ARG 

0.2 
0.8 
1.6 
2.6 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 
NR % (IS°I) NR % (IS°I) 

4292 41.3 100 4192 40.3 79 
1013 37.2 104 999 39.7 78 

135 27.4 116 116 40.5 75 
23 30.4 122 18 38.9 82 

ARG 

1.6 
3.2 
5.5 

Positive triplets Negative triplets 
(GCZ) (GCZ) 

NR % (IS°I) NR % (IS°I) 
14429 74.6 61 12458 73.6 117 
4360 74.3 61 3361 72.3 116 

322 74.2 61 251 63.7 108 

ARG 

1.2 
2.0 
3.2 
5.5 

Positive quartet Negative quartet 
[equation (16)] [equation (16)] 
NR % (IS°I) NR % (IS°l) 

8034 67.0 70 8032 66.0 108 
3739 68.1 69 3624 66.5 109 
1235 70.2 69 1161 68.1 112 

183 71.0 69 163 60.1 106 

(b) The reliability of the small-cross quartets is inferior 
to the triplet reliability. Their number is often markedly 
smaller than the number of triplets, in agreement with our 
expectations. 

(c) For CARP, the small-cross quartets completely fail: 
the number of cosine signs incorrectly estimated is larger 

Table 9. E2: statistical calculations for small-cross 
quartet and triplet invariants 

Experimental data for native and derivative structures are used. For the 
description of the protocol used for the calculations, see Table 3. 

ARG 

0.2 
0.4 
0.8 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 
NR % (IS°l) NR % (IS°I) 
606 55.3 84 624 51.1 92 

46 56.5 80 64 59.4 103 
1 0.0 175 - - - 

ARG 

0.8 
1.2 
1.6 

Positive triplets Negative triplets 
(GCZ) (GCZ) 

NR % (IS°l) NR % (iSOl) 
25380 73.8 62 22057 73.6 117 

5032 80.0 55 3819 79.9 125 
805 85.5 49 624 86 131 

ARG 

0.2 
0.4 
0.8 

Positive quartet Negative quartet 
[equation (16)] [equation (16)] 
NR % (IS°l) NR % (IS°l) 

10012 61.4 77 9988 61.0 103 
2331 66.2 71  2265 67.8 110 

83 90.4 43 91 80.2 123 

than the number of the correct ones. This cannot be 
understood if we do not pay attention to the assumptions 
that implicitly allow one to obtain (5) from (4). 

7. About the use of the prior information on the 
heavy-atom positions 

The marginal distribution 

P(¢l,  ¢2, ¢3, ¢4lR1 . . . . .  S1 . . . . .  S7)  

[see (5)] was obtained in the absence of any prior 
information by integrating the distribution 

P ( ¢ 1  . . . . .  ¢7,  1/fl . . . . .  ~7IR1 . . . . .  R7, S1 . . . .  S7) (12)  

over the ten variables ¢5, ¢6, ¢7, ~1 . . . . .  ~7. Such a 
mathematical operation can be described in a qualitative 
way as follows. Since (Hauptman, 1982) 

( C O S ( ¢ / -  l~ri) ) - -  Dli ~ Dtli, (13)  

the integration over ~Ps, ~6, ~7 is equivalent to replacing 

c0s(¢1 + ¢2 + ¢3 + ~4) by its expected value 

Otl4 COS(¢ 1 -I- ¢2 -']- ¢3 "]- ¢4)  

COS(1/f 1 + 1It 2 + l~r 3 + 1//'4) by its expected v a l u e  

OtllOtl2Otl3Otl4 c o s ( e l  '~ ¢2 dr ¢3 31- ¢4).  

The reliability of (13) varies according to the value of 
2R~S[; indeed, 

_ _  1 t t2 
v a r [ c o s ( ¢ /  ~/ ) ]  = 1 + ~D2i _ Dli ,  

where D'2i = I2(2R~S[)/lo(2R~S[). For large values of 
(2R~S~), the experimental value of c o s ( ¢ i -  ~i) is 
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Table  10. M-FABP:  statistical calculations f o r  small- 
cross quartet and triplet invariants 

Experimental data for native and derivative structures are used. For the 
description of the protocol used for the calculations, see Table 3. 

ARG 

0.4 
0.8 
1.6 
3.2 

Positive quartet Negative quartet 
[equation (10)] [equation (10)] 
NR % <1~Ol) NR % <1~ol) 

10096 47.3 93 9904 48.5 88 
3387 48.1 92 3361 48.6 88 

519 50.5 91 538 49.4 89 
30 50.0 86 23 69.6 100 

ARG 

1.2 
2.0 
3.2 
4.4 

Positive triplets Negative triplets 
(GCZ) (GCZ) 

NR % <1~Ol) NR % (1~Ol) 

13364 64.7 73 11656 61.8 104 
8116 66.4 71 6536 63.2 105 
1718 69.8 67 1381 63.1 107 
314 71.3 64 239 63.2 105 

ARG 

0.4 
1.2 
2.0 
3.2 
4.4 

Positive quartet Negative quartet 
[equation (16)] [equation (16)] 
NR % (14,°1) NR % (14,°1) 

9909 52.7 87 10091 52.7 93 
4300 53.2 86 4556 54.2 95 

979 54.3 85 988 52.9 93 
165 49.7 89 175 49.7 89 
62 51.6 82 54 51.9 85 

expected  to be c lose  to D'li so that  the re l iabi l i ty  
pa ramete r  (10) wil l  result  in a useful  d iscr iminator .  This  
m a y  not  occur  i f  (2R~S~) is small :  in this case,  the passage  
f rom (4) to (5) wil l  m a k e  the re l iabi l i ty  o f  the dis t r ibut ion 
deteriorate.  A typica l  case in wh ich  (10) fails is depic ted  
in Fig.  1:1`6'1 = I S ' - R ' I  is smal l  but  the no rma l i zed  
structure factor  o f  the h e a v y - a t o m  structure has large 
modu lus  so that  (13) is not  obeyed.  

The  passage  f rom (4) to (5) can  be per formed wi thou t  
loss o f  in format ion  if  the h e a v y - a t o m  structure is a priori 
known.  S ince  (see Fig.  1 again)  

IE/./I z = 5 "2 + R '2 - 2R'S' c o s ( t / ) / -  lpi), (14) 

we  can integrate  (12) over  ~5, %6, lP7 by cons t ra in ing  
them to sat isfy (14). The  f inal  fo rmula  is 

P ( ~ I R  l . . . . .  R 7, S, . . . . .  $7, IE/415 . . . . .  IE/417) 

--~ [2zrl0(Ac)] -1 exp(A c cos  q0), (15) 

Fig. 1 The vectorial relationship between E~, E~ and Err. 

Table  11. Statistical calculations f o r  small-cross quartet 
when in equation (16) the constraint (17) is used 

(experimental data) 

(a) APP 

ARG 

1.6 
3.2 
5.5 
9.0 

Positive quartets Negative quartets 
[equation (10)] [equation (10)] 
NR % (1~Ol) NR % (14,°1) 

3301 70.5 69 3621 71.6 114 
1423 74.1 66 1577 75.7 119 

156 84.6 61 181 86.7 131 
- - - 5 80.0 142 

(b) CARP 

ARG 

1.2 
2.0 
3.2 
5.5 

Positive quartets Negative quartets 
(GCZ) (OCZ) 

NR % (l~°l) NR % (l~°l) 
6529 69.2 68 6453 68.4 111 
2274 73.1 64 2247 70.9 114 

619 76.9 60 655 73.7 116 
29 79.3 61 32 75.0 113 

(c) E2 

ARG 

0.2 
0.4 
0.8 

Positive quartets Negative quartets 
[equation (16)] [equation (16)] 
NR % ([4,°1) NR % (14,°1) 

9921 65.8 72 10079 65.6 108 
2103 73.2 63 2224 74.8 118 

80 92.5 7 78 87.2 127 

(d) M-FABP 

ARG 

0.4 
1.2 
2.0 
3.2 
4.4 

Positive quartets Negative quartets 
[equation (16)] [equation (16)] 
NR % (1,~°1) NR % (1¢,°1) 

9916 55.4 83 10084 54.9 96 
2000 58.4 80 1993 57.7 95 

287 55.1 84 268 54.5 93 
42 37.1 76 47 6K8 89 

6 66.7 67 13 69.2 85 

where  

A c = [2 ,6 ' i ,6 ; ,6~,6; / (1  + B;)1{[0.4/o~2]/4 
3/2 2 

-I- [0"3/0" 2 ]H[EH5 "~- EH6 "3 I- EH7]} , (16) 

t 1 3/2 2 
Bc = 210.3/0.2 ]/4(e/41e/-/2e/45 + eH3eH48H5 

3C... -~- EH2EH3eH7), 

EHi--- [EHi] 2 -- 1. 

The  e f f ic iency  of  (16) m a y  be deduced  f rom Tables  3 -6 .  
W e  note:  (a) quartets  es t imated  via (16) are as rel iable  as 
triplets estima.ted via the G C Z  formula;  (b) (16) is a m u c h  
more  eff ic ient  re l iabi l i ty  parameter  than (10) in all the 
cases.  In part icular,  whi le  (10) fai ls  for  C A R P ,  (16) 
succeeds.  W e  can conc lude  that  the cos ine  s ign of  a 
quartet  depends  on e .5 ,  ell6 , EH7 ra ther  than on 
(L~), (L6), (L7). These  last  parameters  are no th ing  but  the 
expec ted  va lues  o f  ells, 8/46, ell7 in the absence  of  the 
pr ior  in format ion  on the h e a v y - a t o m  structure.  W h e n  

IE/451, Ig/461, [EH7[ are r emarkab ly  larger  than 1,6;I, 1,6~1, 
1,6~ I, respect ively ,  then the re l iabi l i ty  pa ramete r  (10) wil l  
suffer by  a stat is t ical  bias and wil l  fail. In order  to 
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confirm the above statement, we have calculated, for all 
the quartets in Tables 3-6, the average values of 1"411 and 
IEnil for i = 5, 6, 7. We obtain 

for APP: 
for CARP: 
for E2: 
for M-FABP: 

Table 12. Values for parameters in equation (19) 

~oa~ {[02],/[0~1,,} {[,%,/2/[02],/2 } [,~/,,~/21~, 
(1,4'1) - 0.08 (IEnl) = 0.23 APP 4.39 0.10 0.24 x 1 0  - 2  

(1,4'1) = 0.12 (IEHI) -- 0.84 C A R P  11.41 0.089 x 10 -~ 0.70 x 10 -3 
E2 0.52 0.36 x 10 -2 0.24 x 10 -4 

(1,4'1) = 0.13 (IEHI) - 0.52 M - F A B P  7.78 0.44 x 10 -~ 0.24 x 10 -3 

(1,4'1) - - 0 . 1 1  (IEHI) = 0 . 5 9 .  

The above data explain why, for APP, (10) works well 
and why CARP quartet estimates via (10) are not useful. 
When (16) is used, all the quartets for which 

3/2 2 
[ 0 - 4 / 4 ] H  -~- [0"3/0"2 ]H[EH5 Jc EH6 -~- EH7 ] > 0 

are expelled from the tables [indeed they are estimated 
positive via (16)], so contributing to the reliability of the 
remaining small-cross quartets. 

8. Check of the probabilistic formulas by real 
diffraction data 

The correctness of the quartet parameters (10) and (16) is 
supported by the statistical calculations quoted in 
Tables 3-6. However, their efficiency against lack of 
isomorphism between native and derivative structures, 
errors in experimental data and/or in their mathematical 
treatment is not proved so far. In order to do that we 
checked the formulas with real data. The outcome is 
shown in Tables 7-10. Note the following. 

(a) Errors in measurements and lack of isomorphism 
strongly reduce the efficiency of the triplet estimates 
(compare Tables 3-6 with Tables 7-10). The deteriora- 
tion is quite remarkable for M-FABP and CARP, less for 
APP and E2. 

(b) Quartets are more sensitive than triplets to lack of 
isomorphism and errors in measurements. There are two 
main reasons for this. The first concerns the distorsion of 
the cross magnitudes: if we calculate, for the quartets in 
Tables 7-10, the average values of 1,411 and IEnil for 
i = 5, 6, 7, we have: 

for APP: (1"4'1) = 0.15 (IEHI) -- 0.88 
for CARP:  (1"4'1) = 0.15 (IEHI) = 0.88 
for E2: (1"4'1) = 0.13 (IEnl) = 0.70 
f o r M - F A B P :  (1"4 '1 )=0 .11  ( I E n l ) = 0 . 7 1 .  

If the above values are compared with those obtained for 
calculated data, it is easily understood why the quartet 
estimates via (10) are so poor for the experimental data. 

The second reason concerns the so-called 'inversion' 
of ,4': owing to lack of isomorphism, errors in 
measurements, treatment of the data etc., the experi- 
mental sign of ,4' is opposite to the calculated one (see 
Giacovazzo, Siliqi & Spagna, 1994, for some statistics). 
If v is the sign inversion frequency for the reflexions 
among which the basis quartet reflexions and the triplet 
reflexions are picked up, the inversion frequency for the 

triplet sign and for the quartet sign are approximately 
given by 

v r ~_ v 3 + 3u(1 - v) 2 

I)Q '~" 4v3(1 - v) + 4v(1 - v) 3, 

respectively. For our test data, we found 

forAPP: v_~0.07, v r = 0 . 1 6 ,  VQ=0.22 
for CARP: v "~ 0.45, u r = 0.38, VQ = 0.42 
for E2: v "" 0.03, v r = 0.07, UQ = 0.07 
forM-FABP: u_~0.13, v r = 0 . 2 7 ,  VQ=0.34.  

(c) The application of (10) to real data is never advised 
in practise. 

(d) The reability parameter (16) guarantees more 
reliable estimates of the quartets even when (10) 
completely fails. 

So far, we have used the prior information on the 
heavy-atom structure to modify (10) into (16). However, 
we can introduce a supplementary condition into (16): 
since 1"4'il-< IEHi[ by definition, we can apply the 
following constraint to the basis magnitudes of the 
quartets: 

if 1"4~1 > IEHil, then 1"4' i l -  IEHil for i = 1 , . . . , 4 .  

(17) 

Table 11 shows the quartet statistics for the four test 
structures when (17) is applied. It is easily seen that the 
supplementary constraints improve the efficiency of (16) 
and make it suitable for practical applications. 

9. Conclusions 

Two probabilistic formulas have been obtained for 
estimating quartet phases. The first exploits the seven 
pairs of isomorphous reflexions (R i, Si), for i = 1 . . . . .  7, 
the second benefits from the prior knowledge of the 
heavy-atom structure. While both formulas are reliable 
for error-free data, only the second type is sufficiently 
robust, against lack of isomorphism and experimental 
errors, to be safely applied to real experimental data. The 
theoretical reasons justifying such behaviour have been 
described. The paper also analyses the rule of the quartet 
invariants in a direct procedure aiming at phasing protein 
reflexions via native and derivative data. Emphasis has 
been given to the so-called small-cross quartets since 
they provide information statistically independent of that 
supplied by triplet invariants. 
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APPENDIX A 

According to the definition in the text, 

]31234i = [ i=I~1(1 -- t~2) - l ]  {Y12iY34i -- Y127V34i°~4 

- . . .  "t- ~/12~)"~O~30~4 "J- . . .  "~" ~/i~/34~0t10t2 

-- ~/i~/~4~0~10~2Od3 --  yi~y3~O110~20~4 

-t- ~/i~ 7 y ~  70~ 10t20t30¢4 } 

--- - -  [0-3/0-2 ]pOli 
[ i=1 

x {~ - ~ - d - d - d l 

+[~(i d)-'] ~n --  [0-3/0-2 ]pOli 
i=1 
2 2  2 2 2  

X {0d30~ 4 -- Ol2012d } -- 0120~3 O/4 

x {[0-jd/2]'0 + [0-31d/2],,[0-2],~/2110-2]~/2} [4 ] 
+ H(1 cz/2) -1 3/2 2 -- [0-3/0"2 ]pOl i 

i=1 
2 2  2 2 2  2 2 2  

0~10~2~3} X {Ofl Of 2 - -  0/10~20/4 

x {t0-d0-23/2]'0 + [0-3/d/2].[0-213{2/t0-2]p 3/2} 

q- [ i=I~l(1 -- o~/2) - '  ] er'2 -2- 2.2 { [ 0 - d d / 2 ] ' 0 ,  <<2<<3 ix4 

3/2 3/2 312 2 + [0-310-2 ].[0-2]. 110-2],o } 

-- [0-3/0-2 1'0 + [0-310-312]'010-310-312]~ 

x { E o - ~ l g 2 / t o - ~ f f ' } t d ' / ( 1 - d ) l  2 

+ 1-I 0~/2/( 1 _,~/2) [0-3/0-2 ]~{[0-2]~/[0-21'0 
i=1 

2 3/2 2 3/2" 3/2 = ~, ([0-310-2 ]p + [0-3/0-2 1"010-310-2 ]H 
3/2 2 x {[0-21~/2/[0-21~ 2} + [0-3/0-2 1,,{[0-G/[0-21,,}). 

(18) 

For the usual pairs, native-protein-heavy-atom 
derivative, 

3/2 2 
[0-3/°2 ].{[0-2]p/[0-2]. } 

>> [0-31d/2]A0-31d/2]. t[0-2g/2110-2]~/2 } 
>> [0-dd/2]~. (19) 

The reader can fmd in Table 12 the values of the various 
parameters in the inequality (19) calculated for the test 
structures. Therefore, we can approximate (18) to 

2 3/2 2 
B12347 - -  0ti[0-3/0-2 ]H {[0-2]p/[0-2]H }" (20 )  

Since (see the main text) 
3/2 2 

B1234 i ~-- [0"3/0" 2 ]p, 

B1234 i may be neglected with respect to B1234 i. 
In an analogous way, it may be verified that 

BroOd(l) 3/22 3/2 3/2 2 
1234i --0li([0-3/0-2 ]p +[0-3/0"2 ]p[0-3/0-2 ]H 

x {[o-~g/2110-2]~/2 }). (21) 
Rm°d(1) may be neglected when In accordance with (19),---'1234i 

compared with B1234 i. 
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